The chemical equilibrium calculations follow the chart of ICE table where I stands for an initial and C for a change and
E for an equilibrium.
The videos below illustrate the chemical equilibrium in some details:
https://www.youtube.com/watch?v=aJ0KNQ5-KaI
https://www.youtube.com/watch?v=54n1XppP-lA
2 NO (g) + O2 (g) 2 NO2 (g)
K C = [ NO2 ] 2 / { [ NO ] 2 x [ O2 ] } = [ 0.129 ] 2 / { [ 0.106 ] 2 x [ 0.122 ] } = 12.1
1/2 NO (g) + 1/4 O2 (g) 1/2 NO2 (g)
K C = [ NO2 ] 1/2 / { [ NO ] 1/2 x [ O2 ] 1/4 } = [ 0.129 ] 1/ 2 / { [ 0.106 ] 1/2 x [ 0.122 ] 1/4 } = 1.87
0.30 M before they are mixed and when equilibrium is reached, the equilibrium concentration of A2D is 0.20 M. Use ICE table for your calculations.
2 AB (g) + C2D (s) A2D (g) + 2 CB (s) K C = [ A2D ] / [ AB ] 2 = [ 0.20 ] / [ 0.5 ] 2 = 0.8
Using ICE table:
2 AB (g) | C2D | A2D | CB | |
I (initial) | 0.30 M | – | 0.30 M | – |
C (change) | 0.20 M | – | 0.10 | – |
E (equilibrium) | 0.5 M | – | 0.20 M | – |
1.2 x 10 – 5
2 NO2 (g) 2 NO (g) + O2 (g)
ICE table:
2 NO2 (g | 2 NO (g) | O2 (g) | |
I (initial) | [0.50 mol /2.0 L] = 0.250 M | 0 | 0 |
C (change) | – 2 x | + 2 x | + x |
E (equilibrium) | 0.250 – 2 x | 2 x | x |
K C = [ NO2 ] 2 / { [ NO ] 2 * [ O2 ] }
1.2 x 10 -5 = { [ 2 x ] 2 * [x ] / [ 0.250 – 2 x ] 2
K C = 1.2 x 10 -5 <<<< 0.250 , then 2x is discarded because it is insignificant:
1.2 x 10 -5 = { [ 2 x ] 2 * [x ] / [ 0.250 – 2 x ] 2 = 4 x 3 / (0.250) 2
4 x 3 = (0.250) 2 * ( 1.2 x 10 -5 )
x = [ (0.250) 2 * ( 1.2 x 10 -5 ) ] 1/3 = 5.72 x 10 -3
[ NO2 ] = 0.250 – 2 (5.72 x 10 -3) = 0.29 M
[ NO ] = 2 x = 2 (5.72 x 10 -3 ) = 0.011 M
[ O2 ] = 5.72 x 10 -3 = 0.00057 M
CO2 (g) + H2 (g) ßà CO (g) + H2O (g)
CO2 (g) | H2 (g) | CO (g) | H2O (g) | |
I (initial) | 0.100 M | 0.100 M | 0 | 0 |
C (change) | -x | -x | +x | +x |
E (equilibrium) | 0.100 – x | 0.100 – x | x | x |
K C = { [ CO ] * [ H2O ] } / { [ CO2 ] * [ H2 ] }
K C = 0.64 = { [ x ] * [ x ] } / { [ 0.100 – x ] * [ 0.100 – x ] } = [ x 2 ] / [ 0.100 – x ] 2
√ 0.64 = √ [ x 2 ] / [ 0.100 – x ] 2
0.80 = x / (0.100 – x)
0.080 – 0.80 x = x
x + 0.80 x = 0.080
1.80 x = 0.080
x = 0.0444
[ CO ] = [ H2O ] = 0.0444 M
[ CO2 ] = [ H2 ] = 0.100 – x = 0.100 – 0.0444 = 0.0556 M
2 HI (g) H2 (g) + I2 (g)
2 HI (g) | H2 (g) | I2 (g) | |
I (initial) | 0.096 M | 0.010 M | 0.010 M |
C (change) | -2x | +x | +x |
E (equilibrium) | 0.096 -2x | 0.010 + x | 0.010 + x |
Q = { [ H2 ] * [ I2 ] } / [ HI ] 2 = [ 0.010] 2 / [0.096] = 0.0010 è Q < K C and hence the reaction shifts to the right (products’ side).
K C = [ 0.010 + x ] * [ 0.010 + x] / { [ 0.096 ] 2 } = 0.016 K C = [ 0.010 + x ] 2 / [ 0.096 -2x ] 2 = 0.016
√[ 0.010 + x ] 2 / [ 0.096 -2x ] 2 = √0.016 [ 0.010 + x ] / 0.096 – 2x ] = 0.1265 (0.1265) * (0.096 – 2x) = 0.010
0.01214 – 0.253 x = 0.010
0.01214 – 0.010 = 0.253 x
x = 0.008458 = 0.00846
[ H2 ] = [ I2 ] = 0.010 + 0.00846 = 0.01846 M [ HI ] = 0.096 – 2x = 0.07908 M
H2 (g) + CO2 (g) ßà CO (g) + H2O (g)
[ H2 ] = [ CO2 ] = [2.00 mol / 4.00 L ] = 0.500 mol / L = 0.500 M
H2 (g) | CO2 (g) | CO (g) | H2O (g) | |
I (initial) | 0.500 M | 0.500 M | 0 | 0 |
C (change) | -x | -x | +x | +x |
E (equilibrium) | 0.500 – x | 0.500 – x | x | x |
K C = { [ CO ] * [ H2O ] } / { [ H2 ] * [ CO2 ] } = 0.771
K C = { [ x ] * [ x ] } / { [ 0.500 – x ] * [ 0.500 – x ] } = 0.771 0.771 = x2 / (0.500 – x) 2
√0.771 = √ x2 / (0.500 – x) 2
0.8781 = x / (0.500 – x)
0.4391 – 0.8781x = x è x = 0.239 [ CO ] = [ H2O ] = 0.239 M
[ H2 ] = [ CO2 ] = 0.500 – 0.239 = 0.261 M
In all these examples, the simplified solutions are used with the assumption that the initial concentrations are much larger than the equilibrium concentrations.
In the example below will used the more intensive method using the quadratic equation without any assumptions:
CO (g) + Br2 (g) COBr2 (g)
[ CO ] = 0.400 mol /5.00 L = 0.0800 M [ Br2 ] = 0.300 mol /5.00 L = 0.0600 M
[ COBr2 ] = 0.0200 mol ‘ 5.00 L = 0.00400 M
Q = { [ COBr2 ] } / { [ CO ] * { Br2 } } = { [ 0.00400 ] } / { [ 0.0800 ] * { 0.0600 } } Q = 0.833
K C = 0.680
Q > K C, therefore the reaction shifts toward the reactants (to the left).
CO (g) | Br2 (g) | COBr2 (g) | |
I (initial) | 0.0800 M | 0.0600 M | 0.00400 M |
C (change) | + x (shift to left) | + x (shift to left) | -x (shift to left) |
E (equilibrium) | 0.0800 + x | 0.0600 + x | 0.00400 – x |
K C = 0.680 = { [ COBr2 ] } / { [ CO ] * { Br2 } }
0.680 = { [ 0.00400 – x ] } / { [ 0.0800 + x ] * { 0.0600 + x } }
0.680 ( 0.004800 + 0.140 x + x2 ) = ( 0.00400 – x )
( 3.264 x 10 3 + 0.0952 x + 0.680 x2 ) = ( 0.00400 – x )
0.680 x2 + 1.0952 x – (7.36 x 10 -4) = 0
Applying the quadratic equation:
Where:
x = { [ – 1.0952 ] -/+[ √ (1.095202 – 4*(0.680)*( 7.36 x 10 -4) ] } / (2* 0.680) x = 6.72 x 10 – 4
[ COBr2 ] = 0.00400 – 6.72 x 10 – 4 = 0.00333 M
[ CO ] = 0.0800 + 6.72 x 10 – 4 = 0.0807 M
[ Br2 ] = 0.0600 + 6.72 x 10 – 4 = 0.607 M