6.5 Electronegativity Trend

Electronegativity

When two elements are joined in a chemical bond, the element that attracts the shared electrons more strongly is more electronegative. Elements with low electronegativities (the metallic elements) are said to be electropositive.

It is important to understand that electronegativities are properties of atoms that are chemically bound to each other; there is no way of measuring the electronegativity of an isolated atom.

Figure 6.60 Periodic Trend in Electronegativity

Moreover, the same atom can exhibit different electronegativities in different chemical environments, so the “electronegativity of an element” is only a general guide to its chemical behavior rather than an exact specification of its behavior in a particular compound. Nevertheless, electronegativity is eminently useful in summarizing the chemical behavior of an element. You will make considerable use of electronegativity when you study chemical bonding and the chemistry of the individual elements.

Because there is no single definition of electronegativity, any numerical scale for measuring it must of necessity be somewhat arbitrary. Most such scales are themselves based on atomic properties that are directly measurable and which relate in one way or the other to electron-attracting propensity.

The most widely used of these scales was devised by Linus Pauling and is related to ionization energy and electron affinity.

The Pauling scale runs from 0 to 4; the highest electron affinity, 4.0, is assigned to fluorine, while cesium has the lowest value of 0.7. Values less than about 2.2 are usually associated with electropositive, or metallic character. In the representation of the scale shown in figure, the elements are arranged in rows corresponding to their locations in the periodic table. The correlation is obvious; electronegativity is associated with the higher rows and the rightmost columns.

The location of hydrogen on this scale reflects some of the significant chemical properties of this element. Although it acts like a metallic element in many respects (forming a positive ion, for example), it can also form hydride-ion (H) solids with the more electropositive elements, and of course its ability to share electrons with carbon and other p-block elements gives rise to a very rich chemistry, including, of course, the millions of organic compounds.